TPD7106F Application Note

Description

TPD7106F is a high-side gate driver IC for N-channel MOSFET with 12 V power. MOSFET used is driven by an internal charge-pump circuit (externally connected to a capacitor). By selecting the most suitable MOSFET for your application, you can configure the most suitable high-side switch from small to large currents. This IC has a built-in protection function for reverse-connection of the power supply in addition to the charge pump voltage drop detection function and diagnostic output function, which contributes to improved system safety. In addition, a rapid off command can be received to turn off the external MOSFET.

. Do not design your products or systems based on the information on this document. Please contact your Toshiba sales representative for updated information before designing your products.

TOSHIBA

Table of Contents

Description	1
Table of Contents	2
1. Product overview	4
1.1. I/O pins of TPD7106F	5
1.2. Compare products (TPD7104AF, TPD7106F, TPD7107F)	5
2. Product features	6
2.1. Control of external MOSFET	6
2.2. Function to quickly turn off external MOSFET	7
2.3. Charge pump circuit	8
2.4. Low voltage detection function of charge pump voltage	
2.5. Power reverse connection protection function	. 10
3. Electrical characteristics measurement circuit diagram	. 11
3.1. Switching time measuring circuit 1 (t _{ON} , t _{OFF1})	
3.2. Switching time measuring circuit 2 (t _{OFF2})	. 12
3.3. Output current measurement circuit with power reverse connection	
4. Terminal equivalent circuit diagram	.13
5. Application circuit example (When 2 MOSFETs are connected in parallel)	.14
6. Explanation of terms	.15
6.1. Absolute maximum rating	. 15
6.2. Electrical characteristics	. 16
7. Evaluation board	.18
7.1. Appearance of evaluation board	. 18
7.2. Method of use for TPD7106F evaluation board	. 19
7.3. Evaluation board circuit diagram	. 19
7.4. Bill of materials	. 20
7.5. Evaluation board layout	. 21
Notes on contents	.22
IC usage considerations	.22
Notes on handling of ICs	.22

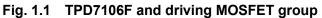
TOSHIBA

List of Figures

Fig. 1.1	TPD7106F and driving MOSFET group	. 4
Fig. 2.1	Control of external MOSFET	. 6
Fig. 2.2	I/O waveform	. 6
Fig. 2.3	Rapid off control waveform	. 7
Fig. 2.4	Rising of charge pump voltage (V _{CPV}) after releasing standby	. 8
Fig. 2.5	Low voltage detection function of charge pump voltage	. 8
Fig. 2.6	Low voltage detection waveform	. 9
Fig. 2.7	Behavior of power reverse connection	10
Fig. 2.8	Behavior of power reverse connection (simulation)	10
Fig. 3.1	Switching time measurement circuit 1	11
Fig. 3.2	Switching time and load capacitance (simulation)	11
Fig. 3.3	Switching time measurement circuit 2	12
Fig. 3.4	Output current measurement circuit with power reverse connection	12
Fig. 4.1	STBY terminal equivalent circuit	13
Fig. 4.2	IN1, IN2 terminal equivalent circuit	13
Fig. 4.3	CP1, CP2, CPV terminal equivalent circuit	13
Fig. 4.4	CP1-, CP2- terminal equivalent circuit	13
Fig. 4.5	OUT1 terminal equivalent circuit	13
Fig. 4.6	OUT2 terminal equivalent circuit	13
Fig. 4.7	DIAG terminal equivalent circuit	14
Fig. 4.8	GND1, GND2 equivalent circuit	14
Fig. 5.1	Application circuit example	14
Fig. 7.1	Applications of TPD7106F	18
Fig. 7.2	TPD7106F evaluation board appearance and terminal description	18
Fig. 7.3	Method of use for TPD7106F evaluation board	19
Fig. 7.4	TPD7106F evaluation board circuit diagram	19
Fig. 7.5	TPD7106F evaluation board layout	21

List of Tables

Table 1.1	Pin Description	5
Table 1.2	Product comparison	5
Table 2.1	Truth table	7
Table 6.1	Absolute maximum ratings1	15
Table 6.2	Electrical characteristics 11	6
Table 6.3	Electrical characteristics 21	17
Table 7.1	BOM list	20


1. Product overview

Mechanical relays have long been widely known as switches that cut off and connect the power supply line from a battery or other power source to the load. However, mechanical relays have problems in durability because they mechanically open and connect contacts repeatedly, and semiconductor relays using semiconductor elements are becoming increasingly popular in applications where long-term reliability is required. With the increasing number of systems, the current capability required of semiconductor relays is increasing year by year, and it is desirable to realize high-current semiconductor relays with low-loss and low heat generation by using load switch circuits using discrete N-channel MOSFET with low on-resistance.

TPD7106F is an N-channel MOSFET gate driver for 1-output high-side switches with a built-in charge pump circuitry. Combined with an external discrete N-channel MOSFET, high-side switches for high-current applications can be configured. In addition, unlike mechanical relays, the configuration of this semiconductor relay has no contact wear, so maintenance-free operation can be realized. In the event of an error, the microcontroller controls the turn-off function independently of the microcontroller using the I/O pins that rapidly control turn-off to protect MOSFET, thereby ensuring safe operation.

VBAT

1.1. I/O pins of TPD7106F

Pin No	Symbol	Description		
1	CP1-	The terminal for charge pump capacitor connection.		
2	TEST	The terminal for and internal circuit test. Normal operation = connect to Ground.		
3	CP1	The terminal for charge pump capacitor connection.		
4	V _{DD}	Power supply pin.		
5	STBY	Standby mode control pin.		
6	IN1	Input pin. Built in pull down resistor. (for Normal operation)		
7	IN2	put pin. Built in pull down resistor. (for rapid off)		
8	GND1	round pin.		
9	GND2	Ground pin.		
10	DIAG	Diagnostic output (Open drain).		
11	OUT2	Output pin for an external N-channel MOSFET drive (for rapid off)		
12	OUT1	Output pin for an external N-channel MOSFET drive (for Normal switching)		
13	CPV	Output of charge pump voltage.		
14	CP2	The terminal for charge pump capacitor connection.		
15	N.C	No-Connect pin.		
16	CP2-	The terminal for charge pump capacitor connection.		

Table 1.1 Pin Description

1.2. Compare products (TPD7104AF, TPD7106F, TPD7107F)

The following table shows the main differences between our 1-channel high-side N-channel MOSFET gate driver ICs. Depending on the product, highly safe protection functions such as power supply reverse connection protection and GND disconnection protection are built in. The TPD7106F features an output source current of 10 mA, an output sink current of 0.4 A, and the ability to turn on/off parallel-connected MOSFETs. Also, the method of controlling the external MOSFET during protection operation differs depending on the product, so consider these points when selecting an appropriate product.

ltem	TPD7104AF	TPD7106F	TPD7107F
Wafer process	BiCD0.13 µm	BiCD0.13 µm	BiCD0.13 µm
Power Supply Voltage (DC)	24 V	27 V	26 V
Power Supply Voltage (Pulse)	40 V (t≤300 ms)	40 V (t≤500 ms)	36 V (t≤400 ms)
Output source current	100 µA	10 mA	100 μA
Output sink current	5 mA	0.4 A	5 mA / 230 mA (Note2)
Reverse Battery protection method (Note1)	MOSFET OFF	MOSFET OFF	MOSFET ON
GND open protection.	-	-	\checkmark
Package.	PS-8	SSOP16	WSON10A

Table 1.2	Product	comparison
-----------	---------	------------

Note1: Difference in external MOSFET operation when the power is reversed.

MOSFET ON: MOSFET OFF: To reduce losses, the MOSFET is turned on and current flows.

MOSFET and apply current to the MOSFET body diodes. To interrupt the current, connect an

additional driver IC+ MOSFET so that the drain and drain are connected.

Note2: Switches to rapid off operation when an abnormality is detected.

2. Product features

The functions of TPD7106F include on/off control and quick off control of external MOSFET by input signal. It also has a built-in charge pump circuit (a capacitor is provided externally). It has a built-in charge pump voltage low voltage detection function, diagnostic output, and protection against reverse power supply connection.

2.1. Control of external MOSFET

The charge pump and the driving circuitry operate upon receiving the external N-channel MOSFET control signal from the input pin IN1. Drive the transistor M1 shown in Fig. 2.1 (M2 is off) to turn on MOSFET (Q1, Q2 ($@V_{IN1}=V_{IH}$) with enough gate-voltage ($V_{OUT1}=V_{DD}+12$ V (typ.)). By driving M2 (M1 is off), MOSFET is turned off (driver on resistance = 630 Ω (typ.) ($@V_{IN1}=V_{IL}$).

Input voltage of IN1 pin High-level input voltage Low-level input voltage Output voltage of OUT1 pin

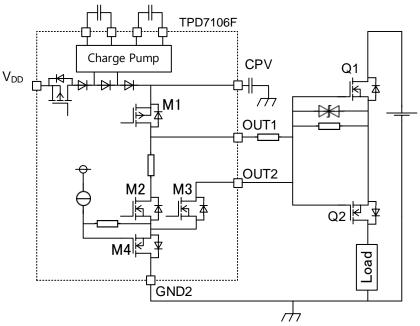
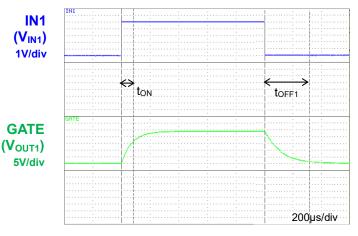



Fig. 2.1 Control of external MOSFET

Switching time

ton, toff1

Fig. 2.2 I/O waveform

2.2. Function to quickly turn off external MOSFET

To turn off the external MOSFET immediately, use the input pin IN2. Connect OUT2 to OUT1 output path (Fig. 2.1). Drive M3 (M1 is off) to quickly lower the gate-voltage and turn off the external MOSFET (Q1, Q2) ($@V_{IN2}=V_{IH}$).

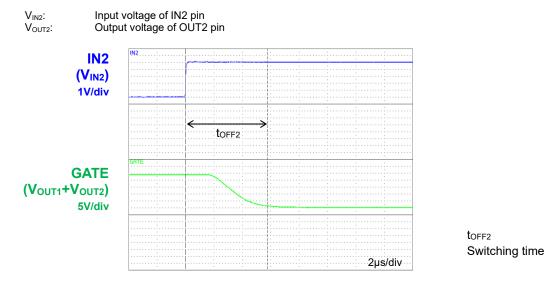


Fig. 2.3 Rapid off control waveform

Table 2.1 Truth table

IN1	IN2	STBY	OUT1	OUT2	Condition
X (Note 1)	Х	L	Hiz (Note 2)	Hiz	Standby mode
L	L	Н	L	Hiz	Normal operation
Н	L	Н	Н	Hiz	Normal operation
L	Н	Н	L	L	Danid Off Mada
Н	Н	Н	L	L	Rapid Off Mode

Note 1: Don't care. Note 2: High impedance.

2.3. Charge pump circuit

The charge pump circuit is a step-up power supply circuit for generating the external N-channel MOSFET gate-drive voltage. For the high-side switch, the source potential is approximately equal to the supply voltage when the N-channel MOSFET is turned on. To maintain the on-state, a voltage equal to the supply voltage + 10 to 15 V and higher than the supply voltage must be applied to the gate. A charge pump circuit is a circuit that generates a voltage equal to or greater than this power supply voltage inside IC.

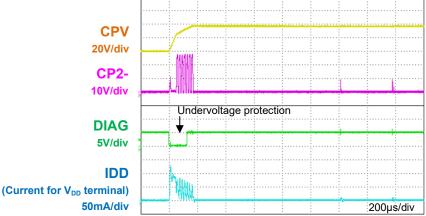


Fig. 2.4 Rising of charge pump voltage (V_{CPV}) after releasing standby

2.4. Low voltage detection function of charge pump voltage

TPD7106F monitors CPV terminal voltage and detects a charge pump voltage drop. When the voltage falls below the charge-pump low judgment voltage V_{CPL} (V_{DD} +4.7V (typ.)), DIAG pin becomes L state. Output pin OUT1, OUT2 keeps operating. When STBY pin is set to the L state, the charge pump is stopped because the IC is in the standby mode.

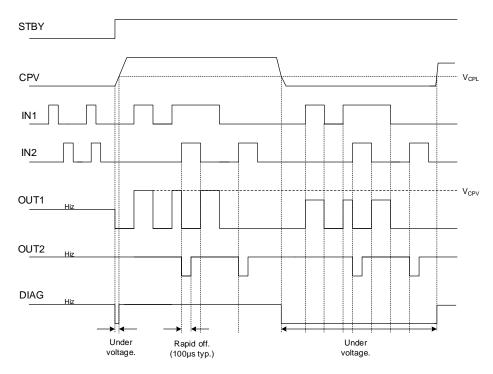


Fig. 2.5 Low voltage detection function of charge pump voltage

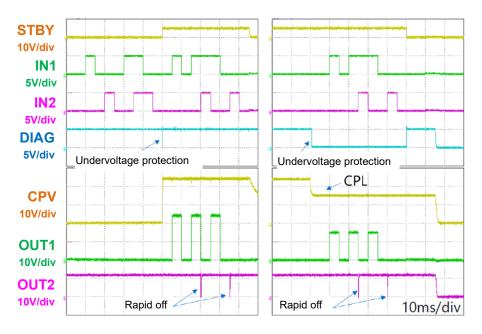


Fig. 2.6 Low voltage detection waveform

2.5. Power reverse connection protection function

When the power supply is connected in the reverse-polarity, M1 and M2 are turned off, the current from GND terminal is cut off by M4, M5, and the external MOSFET is turned off.

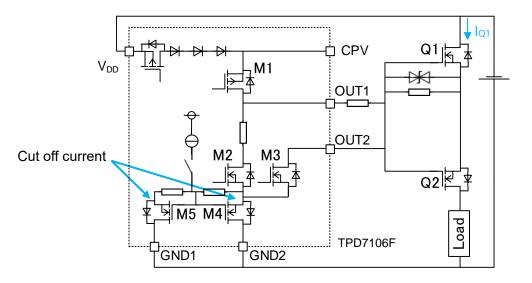


Fig. 2.7 Behavior of power reverse connection

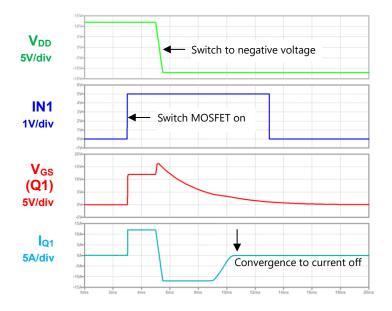


Fig. 2.8 Behavior of power reverse connection (simulation)

3. Electrical characteristics measurement circuit diagram

3.1. Switching time measuring circuit 1 (ton, toff1)

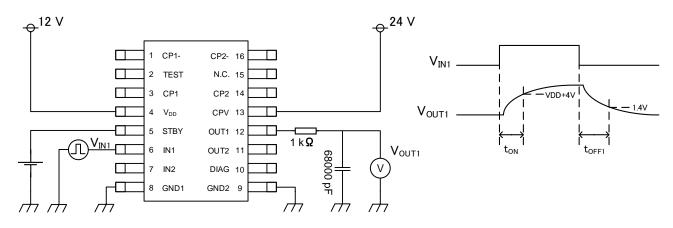


Fig. 3.1 Switching time measurement circuit 1

The switching time of the TPD7106F is affected by the load capacitance it drives. When using this product to switch the power supply path (cut one power supply path and then connect the other power supply path), take these into consideration. As a reference, when the load condition (CL=68000 pF) circuit in Fig. 3.1 is simulated with a simple SPICE model (typ. conditions), the switching time: rising t_{ON} is 0.15 ms, and falling t_{OFF1} is 0.4 ms. Consider these switching times when designing so that different power supply paths are not short-circuited during switching.

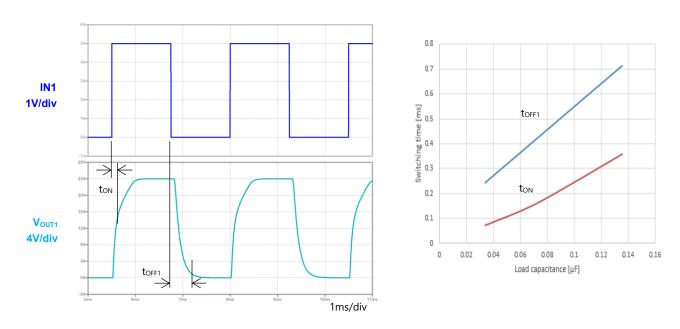


Fig. 3.2 Switching time and load capacitance (simulation)

3.2. Switching time measuring circuit 2 (tofF2)

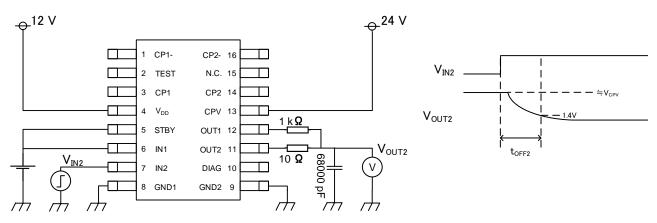


Fig. 3.3 Switching time measurement circuit 2

3.3. Output current measurement circuit with power reverse connection

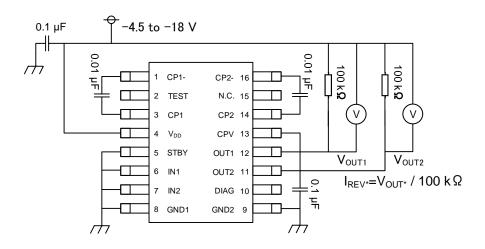


Fig. 3.4 Output current measurement circuit with power reverse connection

TOSHIBA

4. Terminal equivalent circuit diagram

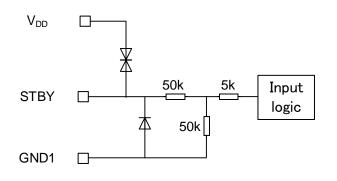
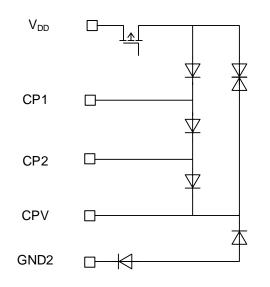
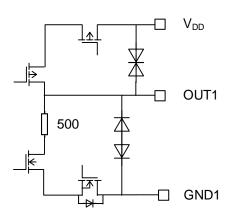
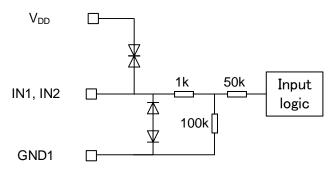
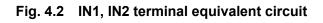


Fig. 4.1 STBY terminal equivalent circuit


Fig. 4.3 CP1, CP2, CPV terminal equivalent circuit

*) Resistance unit: [Ω]

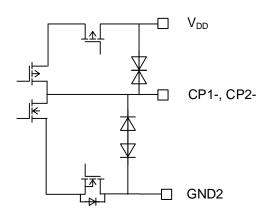
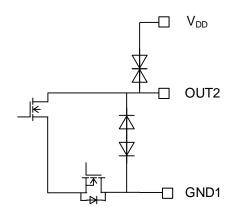
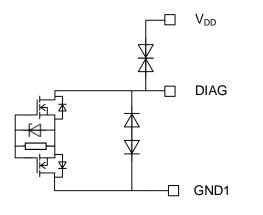
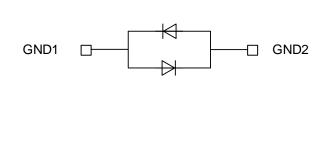
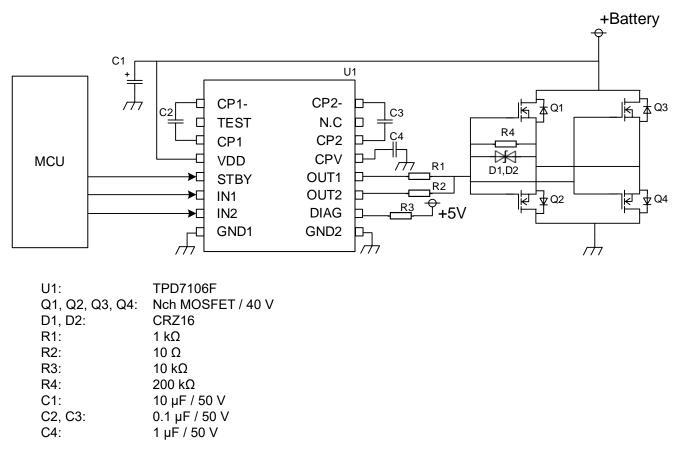




Fig. 4.4 CP1-, CP2- terminal equivalent circuit



© 2023 Toshiba Electronic Devices & Storage Corporation



5. Application circuit example (When 2 MOSFETs are connected in parallel)

Note: Capacitors for the power supply lines should be connected as close to the IC as possible.

Fig. 5.1 Application circuit example

6. Explanation of terms

6.1. Absolute maximum rating

Table 6.1 Absolute maximum ratings

Term	Symbol	Descripition		
Line voltage (DC)	Vdd (1)	DC-voltage rating that does not cause breakdown, property degradation, or reliability degradation of IC when applied to V_{DD} terminals.		
Power supply voltage (pulse)	Vdd (2)	Pulse-voltage rating that does not cause breakdown, property degradation, or reliability degradation of IC when applied to V_{DD} terminals.		
Input voltage (1)	VSTBY	The voltage-rating at which IC does not break, deteriorate properties, or degrade reliability when applied to STBY terminals.		
Input voltage (2)	VIN1, VIN2	The voltage-rating at which IC does not break, deteriorate properties, or degrade reliability when applied to IN1, IN2 terminals.		
CPV power	V _{CPV}	The voltage-rating at which IC does not break, deteriorate properties, or degrade reliability when applied to CPV terminals.		
TEST terminal voltage	VTEST	The voltage-rating at which IC does not break, deteriorate properties, or degrade reliability when applied to TEST terminals.		
Output current (source)	I _{OUT1 (1)}	The current rating at which IC can flow out of the output terminals that will not cause breakdown, property degradation, or reliability degradation.		
Output current (sink)	I _{OUT1 (2)}	The current rating that a IC can draw from its output terminals that will not destroy, degrade properties, or degrade reliability.		
Output current (sink)	Iout2	The current rating that a IC can draw from its output terminals that will not destroy, degrade properties, or degrade reliability.		
Diagnostic output voltage	VDIAG	The voltage-rating at which IC does not break, deteriorate properties, or degrade reliability when applied to DIAG terminals.		
Diagnostic output current	Idiag	The current rating at which IC can flow to DIAG terminals that will not cause breakdown, property degradation, or reliability degradation.		
Power dissipation	PD	Max allowable power dissipation for the entire operating area without IC corruption, etc.		
Operating temperature	T_{opr}	Ambient temperature-range for normal operation of IC.		
Junction temperature	Tj	Max junction temp. allowed for IC operation.		
Storage temperature	T _{stg}	Ambient temperature range that can be stored or transported without applying voltage.		

6.2. Electrical characteristics

Term	Symbol	Description	
Power voltage for driving	V _{DD}	Supply voltage range for guaranteed normal operation and electric properties of IC at the preset junction temperature range.	
Current consumption	I _{DD (1)}	At a junction temperature of 25°C, the current flowing to V_{DD} terminal (12 V) when the input voltage V_{STBY} is kept at a voltage lower than V_{IL} and IC is switched off.	
Current consumption	Idd (2)	Current flowing at V _{DD} terminal when IC is switched off by keeping the input voltage V _{STBY} higher than V _{IH} and V _{IN1} , V _{IN2} lower than V _{IL} at the default junction temperature. The capacitance elements to be placed between the terminal CP1/CP1-and CP2/CP2-shall be 0.01 μ F, respectively.	
Current consumption	IDD (3)	The current flowing into V _{DD} terminal when IC is activated, keeping the input voltage V _{IN} above V _{IH} at the default junction temperature. The capacitance elements to be placed between the pin CP1/CP1-and CP2/CP2-shall be 0.01 μ F and the pin OUT1, OUT2 shall be open, respectively.	
High-level input voltage	VIH	Minimum-voltage on the input-terminal IN1, IN2, STBY that ensures that the internal control circuitry operates normally and that the external N-channel MOSFET is activated at the specified junction temperature.	
Low-level input voltage	VIL	Max voltage on the input-terminal IN1, IN2 that ensures that the internal control circuitry operates normally and shuts off the external N-channel MOSFET at the specified junction temperature. Or, the max voltage of the input-pin STBY that ensures hat the internal circuitry is in standby.	
Input current	Ін	Current that flows into each terminal when a voltage specified in the measurement condition is applied to the input terminal IN1, IN2, STBY at the specified junction temperature range.	
Input current	Ι _{ΙL}	Current that flows out of each terminal when a voltage specified by the measurement condition is applied to the input terminal IN1, IN2, STBY at a specified junction temperature range.	
High level output voltage	Voh1 Voh2 Voh3	Voltage value that is output to the output terminal OUT1 when voltage and current specified by the measuring conditions are applied at the preset junction temperature range.	
Output clamp voltage	V _{OCL}	Voltage clamping value of OUT1 at the output terminal when the specified voltage is applied at the specified junction temperature.	
Low level output voltage	Vol1 Vol2	The output voltage of the output terminal OUT1 and OUT2 when the voltage and current specified in the measuring conditions are applied at the specified junction temperature range.	
Diagnostic output leakage current	I _{DIAGH}	Leakage current flowing through the diagnostic output-pin DIAG when the specified voltage is applied at the specified junction temperature.	
Diagnostic output voltage	Vdiagl	On-state voltage of the diagnostic output-pin DIAG when the specified voltage and current are applied at the specified junction temperature.	

Table 6.2 Electrical characteristics 1

Table 6.3	Electrical	characteristics	2
		characteristics	-

Term	Symbol	Description	
Charge pump oscillation frequency	fosc	Oscillation frequency value of the oscillator that drives the charge pump when a voltage specified by the measurement conditions is applied at a predetermined junction temperature range.	
Charge pump low judgement voltage (detection)	V _{CPL}	Detect voltage value that determines the voltage drop in the charge pump voltage V_{CPV} when a voltage specified in the measurement conditions is applied in the specified junction temperature range.	
Charge pump decrease threshold voltage (hysteresis)	ΔVcpl	The difference between the detection voltage value for determining a voltage drop in the charge pump voltage V_{CPV} when a voltage specified in the measurement conditions is applied in the predetermined junction temperature range and the detection voltage value for releasing the determination of a voltage drop.	
Power driver on-resistance	Ronh Ronl1 Ronl2	The on-resistance of the diagnostic output-pin OUT1, OUT2 when the specified voltage and current are applied at the specified junction temperature.	
Switching time	ton toff1	The rising V _{DD} of the input voltage (50 %) to the rising 4 V of the output voltage plus the delay between 50 % of the falling edge of the input voltage and the falling 1.4 V of the output voltage. $V_{IN1} \xrightarrow{V_{IN1}} \xrightarrow{V_{IN1}} \xrightarrow{V_{IOD+4V}} \xrightarrow{I_{AV}} $	
Switching time	t _{OFF2}	The delay between the rising edge of the line voltage (50 %) and the falling 1.4 V of the line voltage. $V_{IN2} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\$	
Rapid off-drive operating time	to20N	The elapsed time from when OUT2 output pin is turned V _{CPV} (pull-up 100 k Ω) to the potential (24 V) equivalent to the charge pump voltage, when IN2 pin is turned on, when the output voltage V _{OUT2} drops below 50% of 24 V, to when the voltage again rises above 50% of 24 V.	
Output current at reverse connection of power supply	Irev1 Irev2	Current flowing to OUT1, OUT2 of the OUTPUT terminal when the specified voltage is applied at the specified junction temperature.	

7. Evaluation board

This product is used for semiconductor relays that control between various power supply systems, such as batteries, and devices that are driven. Evaluation boards with peripheral devices are prepared so that the functions can be confirmed. Switching operation and function under actual load can be checked.

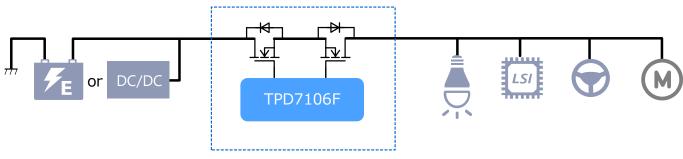
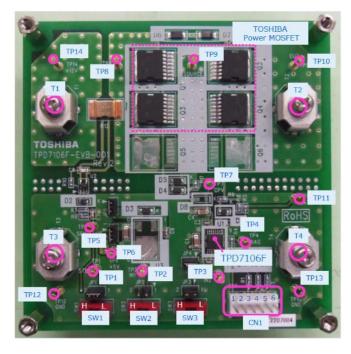



Fig. 7.1 Applications of TPD7106F

7.1. Appearance of evaluation board

pin name	Location	purpose	Absolute maximum ratings
DIAG	CN1-1	Diagnosis output for U1	-0.3 to 27V
SENSE OUT	CN1-2	Current sense output for U3	-0.3 to 6V
STBY	CN1-3	Standby mode control input for U1	-0.3 to 27V
IN1	CN1-4	Input for U1	-0.3 to 6V
IN2	CN1-5	Input for U1	-0.3 to 6V
GND	CN1-6	GND terminal	
+12V	T1	Power supply pin	-18 to 27V
VOUT	T2	Output pin	-18 to 27V
PGND	T3	GND terminal	
PGND	T4	GND terminal	
STBY	TP1	Monitor pin for U1	-0.3 to 27V
IN1	TP2	Monitor pin for U1	-0.3 to 6V
IN2	TP3	Monitor pin for U1	-0.3 to 6V
DIAG	TP4	Monitor pin for Diagnosis output for IC1	-0.3 to 27V
SENSE OUT	TP5	Monitor pin for U3	-0.3 to 6V
+5V	TP6	Monitor pin for U2	4.25 to 5.25V
CPV	TP7	Monitor pin for U1	40V max
DRAIN(Q1,Q3,Q5)	TP8	Monitor pin for drain of Q1,Q3,and Q5.	40V max
SOURCE	TP9	Monitor pin for source of FETs.	-0.3V to VDD
DRAIN(Q2,Q4,Q6)	TP10	Monitor pin for drain of Q2,Q4,and Q6.	40V max
GATE	TP11	Monitor pin for gate of FETs.	±16V
PGND	TP12	GND pin.	
PGND	TP13	GND pin.	
+12V	TP14	Power supply pin	-0.3V to 27V
STBY	SW1	5V(H-state)/0V (L-state) Selection switch	
IN1	SW2	5V(H-state)/0V (L-state) Selection switch	
IN2	SW3	5V(H-state)/0V (L-state) Selection switch	

Fig. 7.2 TPD7106F evaluation board appearance and terminal description

7.2. Method of use for TPD7106F evaluation board

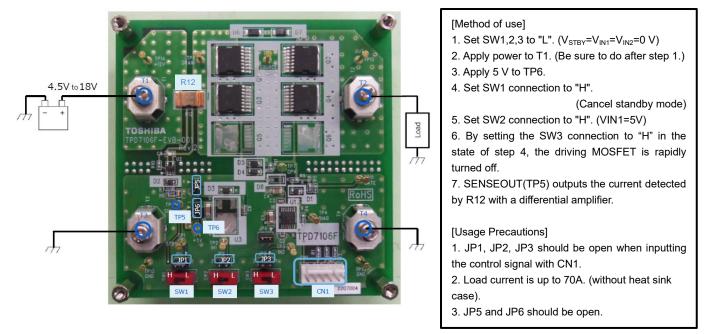


Fig. 7.3 Method of use for TPD7106F evaluation board

7.3. Evaluation board circuit diagram

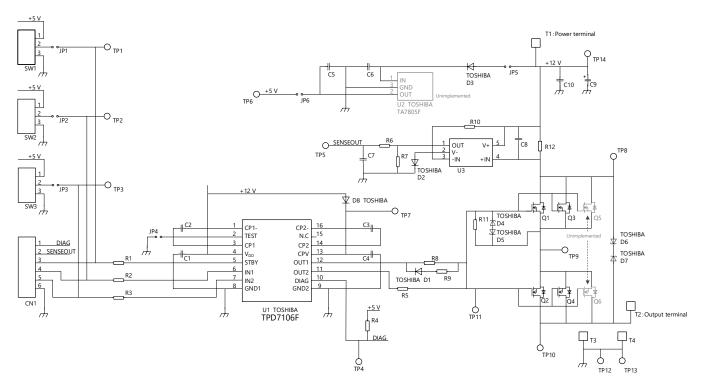
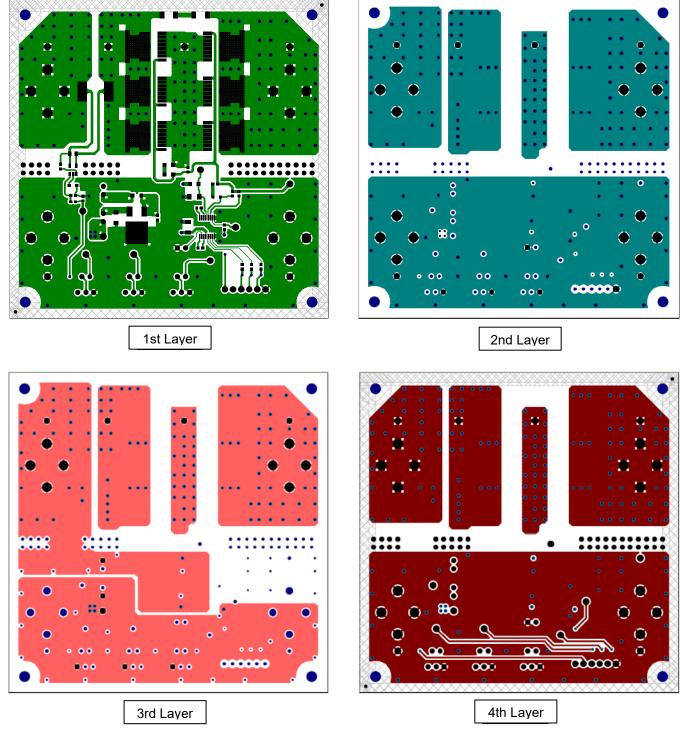
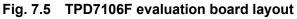


Fig. 7.4 TPD7106F evaluation board circuit diagram


7.4. Bill of materials


Table 7.1 BOM list

parts number	pcs	product number	spec.	maker	description	PKG	size (mm)]
IC1	+ •	TPD7106F	-	TOSHIBA	Power MOSFET Gate Driver	SSOP-16	6.4 x 5.5	
IC2	1	TA7805F	-	TOSHIBA		HSOP-3	6.5 × 9.5	Unimplemente
IC3	1	LTC6101BCS5	-	Analog Devices	Current Sense Amplifier	TSOT-23	2.9 x 2.8	1
Q1,Q2,Q3,Q4	4	XPQR3004PB	-	TOSHIBA	Power MOSFET	L-TOGL	8.45 x 9.9	1
D1,D2	2	1SS352	-	TOSHIBA	Switching Diode	USC	2.5 x 1.25	
D3,D8	2	CRG09A	-	TOSHIBA	Rectifier Diode	S-FLAT	3.5 x 1.6	
D4,D5	2	CRZ16	-	TOSHIBA	Zener Diode	S-FLAT	3.5 x 1.6	
D6,D7	2	CMZ27	-	TOSHIBA	Zener Diode	M-FLAT	4.7 × 2.4	
R1,R2,R3,R4,R7	5	5 –	10k	-	Resistor	-	1.6 x 0.8 (1608)	
R5	1	-	10	-	Resistor	-	1.6 x 0.8 (1608)	
R6	1	-	47k	-	Resistor	-	1.6 x 0.8 (1608)	
R8	1	-	1k	-	Resistor	-	1.6 x 0.8 (1608)	
R9	1	-	100	-	Resistor	-	1.6 x 0.8 (1608)	
R10	1	-	200	-	Resistor	-	1.6 x 0.8 (1608)	
R11	1	-	200k	-	Resistor	-	1.6 x 0.8 (1608)	
R12	1	BVS-M-R0005	0.5mΩ/5W	Isabellenhuette	Shunt Resistor	-	10 x 5.2	
C1,C4	1	-	1.0uF/50V	-	Ceramic Capacitor	-	3.2 x 1.6 (3216)	
C2,C3,C6	2		0.1uF/50V	-	Ceramic Capacitor	-	1.6 x 0.8 (1608)	
C5	1	-	10uF/50V	-	Ceramic Capacitor	-	3.2 x 1.6 (3216)	
C7	1	-	1000pF/50V	-	Ceramic Capacitor	-	1.6 x 0.8 (1608)	
C8	1	-	15pF/50V	-	Ceramic Capacitor	-	2.0 x 1.2 (2012)	
C9	1	-	2.2uF/25V	-	Ceramic Capacitor	-	-	
C10	1	-	100uF/25V	-	Aluminum electric field capacitor	-	-	

TOSHIBA

7.5. Evaluation board layout

Notes on contents

1. Block diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

2. Equivalent circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

IC usage considerations

Notes on handling of ICs

The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Exceeding the maximum rating may cause destruction, damage and deterioration, and may result in injury due to explosion or burning.

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please
 use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without
 limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF
 NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

Toshiba Electronic Devices & Storage Corporation

https://toshiba.semicon-storage.com/